ORGANIC LETTERS 2010 Vol. 12, No. 23 5438-5441 ## Oligomers of a 5-Carboxy-methanopyrrolidine β -Amino Acid. A Search for Order Grant R. Krow,*,† Nian Liu,† Matthew Sender,† Guoliang Lin,† Ryan Centafont,† Philip E. Sonnet,† Charles DeBrosse,† Charles W. Ross III,‡ Patrick J. Carroll,§ Matthew D. Shoulders," and Ronald T. Raines⊥ Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States, Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486-004, United States, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States, Departments of Chemistry and Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States grkrow@temple.edu Received September 23, 2010 ## **ABSTRACT** CD spectra for homooligomers (n=4,6,8) of (1S,4R,5R)-5-syn-carboxy-2-azabicyclo[2.1.1]hexane (MPCA), a methano-bridged pyrrolidine β -carboxylic acid, suggest an ordered secondary structure. Even in the absence of internal hydrogen bonding, solution NMR, X-ray, and in silico analyses of the tetramer are indicative of conformations with trans-amides and C_5 -amide-carbonyls oriented toward the C_4 bridgehead. This highly constrained β -amino acid could prove useful in the ongoing development of well-defined foldamers. Among naturally occurring α -amino acids, proline **1** is the only secondary amine. Although this means that homooligomers of proline do not have *N*-H protons available to stabilize secondary structures by a hydrogen bond, polyproline still forms ordered oligomers. In the course of the rational design of β -peptides related to natural peptides, Seebach wondered if β -peptidic chains without backbone H-bonds might also fold into stable secondary structures. To † Temple University. (1) (a) Kakinoki, S.; Hirano, Y.; Oka, M. *Polym. Bull.* **2005**, *53*, 109–115. (b) Cowan, P. M.; McGavin, S. *Nature* **1955**, *176*, 501–503. (c) Traub, W.; Shmueli, U. *Nature* **1963**, *198*, 1165–1166. explore this possibility, Seebach and co-workers prepared two methylene homologues of proline by formal insertion of a methylene either between the carbonyl C-atom and the $C(\alpha)$ -atom to give **2** or between the $C(\alpha)$ - and $C(\beta)$ -atoms to give **3**. Oligomers (n=3,6,12,18) of (R)-**2** with terminal N-Boc and OBn groups all gave CD patterns in methanol with an intense minimum at 202 nm and a maximum at 223 that seemed indicative of order. The absolute mean-residue molar ellipticity at both 202 and 223 nm decreases with growing chain length suggesting that the secondary structure of longer peptide chains from **2** is destabilized. Similarly, the CD spectra of oligomers (n=3,6) of all (S)-**3** with terminal N-Boc and OEt groups in methanol also gave some ^{*} Merck Research Laboratories. [§] University of Pennsylvania. Department of Chemistry, University of Wisconsin-Madison. ¹ Departments of Chemistry and Biochemistry, University of Wisconsin-Madison. ⁽²⁾ Abele, S.; Vogtli, K.; Seebach, D. *Helv. Chim. Acta* **1999**, *82*, 1539–1558. It was known that peptoids form ordered secondary structures; see refs 18–21 therein. indications of secondary structure. The mean residue molar ellipticity of the hexamer at 230 nm is nearly three times larger than the trimer indicating that in this case the secondary structure may be stabilized by the longer β -peptide chain. Gellman⁴ independently investigated oligomers (n = 2-6) of all (S)-3 with terminal N-Boc and OBn groups in methanol and observed a maximum ellipticity at 228 nm when n = 3-6. However, little evidence beyond CD spectra was provided to show that these β -amino acid oligomers adopted well-defined structures in solution. A model was proposed for the oligomeric peptides of 2.² It assumed an all-trans amide structure with a Φ angle of -72° enforced by the pyrrolidine ring. An antiperiplanar conformation around the $C(\alpha)-C(\beta)$ bond ($\theta=180^{\circ}$) was chosen on the basis of this angle in a trifluoroacetate salt of a trimer of 2 that contains amine and benzyl ester end groups. However, it should be noted that the peptide salt crystallized with four CF₃COOH molecules and the carbonyls of the amide bonds of the salt were hydrogen bonded to acid molecules. A large angle, $\Psi = 180^{\circ}$, was chosen so that the large substituents at $C(\alpha)$ were antiperiplanar to the large substituents at the carbonyl C-atom. The outcome of this somewhat speculative model is a right-handed 10₃ helix with three pitches to bring residue (i + 10) above residue i. The model suggests consecutive fully extended chain segments $[N-C(\beta)-C(\alpha)-CO-N]$, which are twisted by -72° . The structure of peptide oligomers of 3 was not modeled. (*R*)-3-Carboxypyrrolidine **4** (PCA) might also be viewed as a β -amino acid proline analogue in which the acid is moved one atom away from the nitrogen. Gellman³ has used the (*S*)-PCA enantiomer to search for order in pyrrolidine-based oligomers (n=2-6). Normalized CD spectra in methanol for oligomers **5** terminated by *N*-Boc and OBn groups are most ordered when at the tetramer to hexamer level with a minimum ellipticity at 214 nm. A possible conformation has been modeled by calculation.⁴ One of the difficulties in evaluating the order in homooligomers of pyrrolidine-based β -amino acids such as **2** or PCA **4** is the number of degrees of freedom in the molecules. There are no intramolecular hydrogen bonds to control geometry, and unlike *N*-acyl prolines, the amide carbonyl oxygens are not suitably oriented for $n \rightarrow \pi^*$ interactions with the β -carboxyl side chains.⁵ A possible approach to solve this problem is to limit the flexibility of the five-membered ring, as in the methano-fused⁶ or ethano-bridged⁷ structures 6 or 7, or to control amide conformation by α,α -disubstitution as in 8.⁸ Oligomers of 7 and 8 show evidence of order in their CD spectra; a possible structure for oligomers of 7 has been calculated. An alternative conformational restriction is the introduction of a methano-bridge into an N-acyl-pyrrolidine ring to maintain an idealized C^{β} ring pucker, as in structure $\mathbf{9}$. The bridge constrains two internal angles of the pyrrolidine ($\Phi \sim -127^{\circ}$ and $\theta \sim 54^{\circ}$). Of the two remaining rotatable bonds, the amide bond might be biased with the carbonyl oriented either syn or anti to the bridgehead C_1 , so that $\omega \sim 180^{\circ}$ or 0° . Thus, the major remaining rotational freedom responsible for secondary structure would be from the external C_5 —CO bond (Ψ). We believed that introducing such a conformational constraint in β -proline oligomers could provide entry into a well-defined and potentially useful foldamer secondary structure. $$\begin{array}{c} R & \phi \\ \Theta & N & \Theta \\ \hline O O & N & \Theta \\ \hline O & N & \Theta \\ \hline N$$ In preparation for homooligomer formation, racemic acid **9** was resolved as its salt using (S)-(-)- α -methylbenzylamine with THF as recrystallization solvent. The absolute configuration of the resolved (-) acid **9** was established as (1S,4R,5R) by X-ray structure determination of the condensed amide **10**. Org. Lett., Vol. 12, No. 23, **2010** ⁽³⁾ Huck, B. R.; Langenhan, J. M.; Gellman, S. H. Org. Lett. 1999, 1, 1717–1720. ⁽⁴⁾ Sandvoss, L. M.; Carlson, H. A. J. Am. Chem. Soc. 2003, 125, 15855–15862. ^{(5) (}a) Shoulders, M. D.; Raines, R. T. *Annu. Rev. Biochem.* **2009**, *78*, 929–958. (b) Choudhary, A.; Gandla, D.; Krow, G. R.; Raines, R. T. *J. Am. Chem. Soc.* **2009**, *131*, 7244–7246. See refs 3–6 therein. ⁽⁶⁾ Medda, A. K.; Lee, H.-S. Synlett 2009, 921-924. ⁽⁷⁾ Otani, Y.; Futaki, S.; Kiwada, T.; Sugiura, Y.; Muranaka, A.; Kobayashi, N.; Uchiyama, M.; Yamaguchi, K.; Ohwada, *Tetrahedron* **2006**, 62, 11635–11644. ^{(8) (}a) Huck, B. R.; Fisk, J. D.; Guzei, I. D.; Carlson, H. A.; Gellman, S. H. *J. Am. Chem. Soc.* **2003**, *125*, 9035–9037. (b) Huck, B. R.; Gellman, S. H. *J. Org. Chem.* **2005**, *70*, 3353–3362. ⁽⁹⁾ Krow, G. R.; Lin, G.; Herzon, S. B.; Thomas, A. M.; Moore, K. P.; Huang, Q.; Carroll, P. J. J. Org. Chem. 2003, 68, 7562–7564. To test for a conformational trans/cis bias of the amide angle (ω), MPCA 9 was converted with Me₃SiCHN₂ into its methyl ester 11 and then by protecting group exchange into the isobutyryl amide 12. NMR analysis of monomer 12 indicated two H₁ resonances in a 1:1 ratio indicating no inherent bias for trans-/cis-amides. The dimer 13a was prepared by cleavage of the N-Boc group from ester 11 with HCl/dioxane and direct coupling of the resulting amine with (-)-acid **9** using EDC and HOBt. Multiple conformations for dimer 13a are possible. For each of two amide $N(sp^2)-C(sp^2)$ and two $C_5(sp^3)-C(sp^2)$ bonds there are, respectively, two and three different staggered conformations. In theory, there are at least 36 potential local minima. Despite this, the ¹H NMR spectrum of dimer **13a** showed just two major downfield H₁ resonances. To facilitate the spectral analysis of these major resonances, the terminal N-Boc group of 13a was replaced with an N-isobutyryl substituent to give 13b. Expansion of the downfield H₁ region of dimer 13b indicated ten H₁ resonances that individually integrate for at least 3% of the total and that together account for 95% of the H₁ peaks; however, two major H₁ resonances together represent 62% of the H₁ peaks. The key NMR resonances associated with the major conformation of dimer 13b are shown in Table 1. NOE data show that the isopropyl CHMe₂ Table 1. Key Major NMR Resonances for Dimer 13b | proton | unit 1 | unit 2 | carbon | unit 1 | unit 2 | |-------------------|--------------|----------|----------------|--------|--------| | CH | 2.52^{a} | - | | 31.9 | | | H_1 | $5.10^{b,c}$ | 4.88^d | C_1 | 60.1 | 60.9 | | H_3 | 3.37 | 3.70 | C_3 | 47.7 | 46.5 | | $\mathrm{H}_{3'}$ | 3.81 | 3.75 | | | | | ${ m H_4}$ | 3.18 | 3.04 | C_4 | 40.4 | 41.3 | a NOE cross-peak with $H_{3,3'}$ of unit 1. b Coupled to C_3 of unit 1 (HMBC). c NOE cross-peak with $H_{3,3'}$ of unit 2. d Coupled to C_3 of unit 2. is near the methylene $H_{3,3'}$ protons of unit 1. The C_3 carbon associated with these $H_{3,3'}$ protons (by HSQC) is coupled to H_1 of this first unit (by HMBC). Most importantly, the H_1 proton of the first unit has an NOE cross-peak with the $H_{3,3'}$ protons of the second unit, H(1,i)-H(3,i+1). The H_4 resonances for units 1 and 2 could be identified by their W-plan coupling with H_1 protons for each unit. We designate this major dimer conformer as the T4T4 structure. The first amide bond is trans; the carbonyl of unit 1 is directed toward H_4 ; and the second carbonyl is trans. To minimize dipole repulsions, the ester carbonyl is assumed to be oriented toward H_4 (vide infra). With evidence of some solution-phase order for the dimers 13a-13b in hand, the oligomers 14a-16a were prepared (see Supporting Information). The CD spectra of monomer 11 and the oligomers (n = 2, 4, 6, 8) are shown in Figure 1A. The data for β -peptide concentration and number of **Figure 1.** CD spectra for (A) 100 μ M *N*-BOC-(MPCA)_n-OMe in methanol (25 °C). (B) 100 μ M octamer **16a** in water, *n*PrOH, and mixtures of water/*n*PrOH (25 °C). Data are normalized for β -peptide concentration and number of amides. amino acid units were normalized to facilitate comparisons among oligomers of different lengths. The CD spectra of tetramer, hexamer, and octamer have a strong negative molar ellipticity at 198 nm and a weak positive at 212–215 nm. The overlapping of spectra from monomer to octamer clearly shows that substantial order begins to develop at the tetramer level and is enhanced in longer oligomers. The positive molar elipticity increases with increasing oligomer length and shifts to slightly shorter wavelength. CD spectra of the octamer **16a** in water, nPrOH, and mixed solvents of water/nPrOH in different ratios were collected to study the solvent effects on conformation of the oligomer (Figure 1B). From these spectra, it is clear that water has little effect on the secondary structure of octamer. Because the backbone of these peptides is tertiary amides, there are no internal hydrogen bonds for water to disrupt. The *N*-Boc-tetramer **14a** formed a crystalline solid suitable for X-ray analysis (Figure 2). Although a water molecule attached to the C_5 -carbonyl oxygen (O_2) of unit 2 alters the Ψ angles predicted by calculations (lower picture in Figure 2), the tetramer does have a T4T4T4T4 arrangement that places each carbonyl, including the terminal ester group, so that alternate dipoles point in opposite directions (see dimer **13b** above). In solution, the *N*-Boc tetramer **14a** exhibits four major H₁ peaks that represent 58–72% of a major conformation. The NMR analysis of the *N*-isobutyryl tetramer **14b** (Table 2) shows that the major (72%) structure can be described as a T4T4T4T4 conformation with the final ester conformation not determined by NMR (see Supporting Information). **Figure 2.** (Top) ORTEP drawing of tetramer **14a**. (Bottom) Spartan MMFF minimized $(T4)_n$ conformer of tetramer **14a**. Molecular mechanics geometry optimizations of $14b^{10}$ and an *N*-acetyl tetramer 14c (see Supporting Information) Table 2. Key Major NMR Resonances for Tetramer 14b | proton | unit 1 | unit 2 | unit 3 | unit 4 | |-------------------|------------|----------|----------|--------| | CH | 2.52^{a} | - | | | | H_1 | 5.08^b | 4.95^b | 4.97^b | 4.87 | | ${ m H}_3$ | 3.35 | 3.68 | 3.57 | 3.58 | | $\mathrm{H}_{3'}$ | 3.77 | 3.71 | 3.74 | 3.70 | ^a NOE with to H_{3 3'} of unit 1. ^b NOE to H_{3 3'} of the next unit. indicate a preference for $[T4]_n$ conformations. The calculated angles for **14b** as a $[T4]_n$ conformation are $\omega \sim 176-179^\circ$ and $\Psi \sim 58-64.5^\circ$. Importantly, in the favored calculated structure H_1 of the nth residue was in close proximity to $H_{3,3'}$ of the (n+1) residue. Orientations in which the C_5 carbonyl of unit i is oriented toward H_1 of unit i+1, or the amide-carbonyl of any unit is oriented cis toward $H_{3,3'}$ rather than H_1 , are inconsistent with 1H NMR NOE correlations linking H_1 (unit i) with $H_{3,3'}$ (unit i+1). The CD spectra for the MPCA oligomers in Figure 1 are similar to the characteristic concentration-independent CD molar elipticities at 217 nm (maximum) and 198 nm (minimum) found for oligomers of azabicycle **7** of the 2*S*- COOMe configuration. A dependence of conformational stabilization (n = 2-8) on chain length also was noted for oligomers of **7**. Like the present $(T4)_n$ structures for oligomers of **9**, calculations for the tetramer of **7** predict $\Psi = 65^{\circ}$ to be slightly favored. Calculations for oligomers **5** predict $(C1)_n$ conformations to be favored. Notably, the $(C1)_4$ and $(T4)_4$ oligomers under discussion do have alternating anti orientations for their carbonyl dipoles in common. There is indication of a major conformation in each of our oligomers, as shown by the H₁ region of each ¹H NMR spectrum (see Supporting Information). The crystal structure of tetramer 14a, in silico methods, and the solution NMR analyses of oligomers 13b-16b suggest [T4]_n structures for all amide bonds as the major contributors. The ability to have a well-defined folding pattern in the absence of hydrogen bonds or substantial electrostatic and hydrophobic interactions should allow for the creation of foldamers with interesting functions.11 Thus, the MPCA 9 may serve as a useful addition to the arsenal of β -amino acid building blocks. ¹² We are currently preparing C₁- and C₆-substituted MetPyr acid oligomers that might adopt other interesting conformations amendable to NMR analysis. For example, although N-acyl-1-methyl-2-azabicyclo[2.1.1]hexanes are restricted to the conformer with the carbonyl directed to the C₁ position, ¹³ in oligomers of such substrates steric interference is not likely to favor the Me(1,i)-H(3,i+1) interactions present in $(T4)_n$ conformations. Acknowledgment. Financial support was provided by NSF (CHE 0515635 and DGE-0841377) and the NIH (AR044276). CD spectra were collected at the Biophysics Instrumentation Facility established by Grants BIR-0-9512577 (NSF) and S10 RR13790 (NIH). M.S. was supported by a Der Min Fan Fellowship, and M.D.S. was supported by a USA Department of Homeland Security Graduate Fellowship. We thank Rocky Chiang, Kevin Cannon, Ram Edupuganti (TU), and Samuel H. Gellman (UW-Madison) for helpful discussions. Supporting Information Available: General experimental and procedures for preparation of all new compounds, X-ray diffraction analyses of amide 10 and tetramer 14a, spectral assignments for tetramer 14b, a table of H₁ resonances for all oligomers, a calculated (T4)₄ structure 14c, and copies of reported ¹H NMR and ¹³C NMR for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org. OL1022917 Org. Lett., Vol. 12, No. 23, **2010** ^{(10) (}a) *PC Spartan'04*, Essential V2.0.0 Wavefunction, Inc.: Irvine, CA 92612, 2004. (b) A rise/residue of 3.5Å, 2.4 residues/turn, and a pitch of 8.4 Å can be approximated from the calculated structure. ^{(11) (}a) Gellman, S. H. *Acc. Chem. Res.* **1998**, *31*, 173–180. (b) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. *Chem. Rev.* **2001**, *101*, 3893–4011. (c) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. *Chem. Rev.* **2001**, *101*, 3219–3232. (d) Seebach, D.; Gardiner, J. *Acc. Chem. Res.* **2008**, *41*, 1366–1375. ^{(12) (}a) Horne, W. S.; Gellman, S. H. *Acc. Chem. Res.* **2008**, *41*, 1399–1408. (b) Seebach, D.; Beck, A. K.; Bierbaum, D. J. *Chem. Biodiversity* **2004**. *1*, 1111–1239. ⁽¹³⁾ Malpass, J. R.; Patel, A. B.; Davies, J. W.; Fulford, S. J. Org. Chem. **2003**, 68, 9348–9355.